
The Case for a Location Metasystem
Nick Doty

School of Information, UC Berkeley

npdoty@ischool.berkeley.edu

ABSTRACT
Microsoft has proposed an identity metasystem to standardize
identity services and the principles behind them. A location
metasystem can support interoperation between location services,
protect users’ privacy and handle issues of granularity. The
simple OAuth protocol may be a good model for working towards
a location metasystem.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services – Web-based services.

General Terms
Security, Human Factors, Standardization, Theory.

Keywords
Location, metasystem, identity, privacy, granularity.

1. INTRODUCTION
As more services take advantage of location information in order
to provide contextually useful features to users, the need grows
for consistency and flexibility in accessing that location
information. Although individual providers are beginning to
provide such frameworks (Apple's CoreLocation and Yahoo!'s
Fire Eagle, for example), development of location services will
ultimately benefit from a location metasystem.

Otherwise, the danger exists that developers will tend toward ad
hoc solutions or informal standards in creating their services.
Though tempting, this approach can unnecessarily compromise
user privacy and duplicate effort in handling granularity.

This paper will describe what a location metasystem would look
like and outline principles that location systems should follow to
protect user privacy and resolve granularity issues. Finally, it will
propose a way towards this metasystem using a simple analogy to
the OAuth effort.

2. WHAT IS A METASYSTEM?
A metasystem is a system of systems. There may be multiple
location systems, in fact, they're likely to proliferate: providers of
location data (like Apple's iPhone), consumers of location data
(any of the many multiplying location-aware services) and brokers
of location data (like Fire Eagle). A metasystem is a set of
principles and protocols – not a single physical or executable
entity – for the interoperation of the many providers and

consumers of location data.
One analog is the identity metasystem proposed by Microsoft in
Kim Cameron’s paper "The Laws of Identity" [1]. By outlining
an architecture for how various identity systems can interoperate,
the identity metasystem promises to allow all identity providers,
relying parties (identity consumers) and subjects (users) of
authenticated web services to work together using existing
systems. Component systems may be developed by anyone; no
single party has control.[6]

3. PRIVACY
In describing Microsoft’s proposal for an identity metasystem,
Cameron lists seven laws of identity, "fundamental principles to
which any [...] identity architecture must conform". Many of
those principles apply to location as well as identity. This is far
from coincidental: in many ways, our location is a part of our
identity and we feel hesitant to reveal it.

Location systems must only reveal a user's location information
with the user's consent. We see this today in the dialogue box that
pops up on your iPhone and the privacy settings in Fire Eagle.
Providers already recognize that location information is personal
information and that users feel betrayed if personal information is
revealed without consent. (Compare to Cameron’s “User Control
and Consent”.)

Furthermore, location systems should reveal only the location
information necessary. Users should be able to reveal their city or
neighborhood to a restaurant-finding system without revealing
their precise location to the commercial vendor that they may not
entirely trust. (Compare to Cameron’s “Minimal Disclosure for a
Constrained Use”.)

This principle is not yet recognized by all location providers. For
example, Apple’s CoreLocation always reports the user’s exact
latitude and longitude, even when an application may have only
required the city and even when the user might have preferred to
reveal less about their location. Yahoo!’s Fire Eagle, on the other
hand, provides a plethora of options: users can specify any of
eight different levels of precision (no information, exact location,
zip code, neighborhood, city, county, state, country) for each
application that has access to their information.

The principle of minimal disclosure effectively limits revealing
location information to a “need-to-know” basis. By requesting
only the detail of information they require (rather than always
requesting precise location), location consumers mitigate the risk
to their users in the event of a security breach [1].

4. GRANULARITY
One challenge for developers of location-aware services is
handling the granularity of location information. Users can update
their location in any number of ways: they might type their
current street address into a web form, automatically transmit GPS

© ACM, 2009. This is the author's version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the Second
International Workshop on Location and the Web (LocWeb 2009), April
4, 2009 Boston, MA, USA.
http://doi.acm.org/10.1145/1507136.1507140

co-ordinates from their smartphone, or speak the name of their
neighborhood over the phone.

Some developers handle this multiplicity by controlling the input
directly. For example, a mapping site can ask for the street
address in a structured web form on its own website and Google
Maps can accept multiple formats in its generic search box
(lat/long, street address, landmark names). But most location-
aware service developers cannot dictate the granularity of location
information they receive from users as more and more often the
location-aware service gets the location automatically from a
location provider, with little interaction from the user. And few
developers want to duplicate Google’s algorithms for evaluating
the granularity of a location from unstructured text.

Relying on a particular system’s APIs may fulfill a particular
service’s needs. For example, an application running on an
iPhone obtains lat/long co-ordinates that are aggregated from a
mix of GPS, cellular and WiFi inputs. But web services need not
limit their users to a single software platform or a single way of
obtaining location.
Furthermore, without a way of specifying granularity of location
information, it is impossible to meaningfully fulfill the minimal
disclosure principle from the previous section. By exclusively
using exact co-ordinates, CoreLocation cannot adjust reporting
based on a user’s privacy concerns. A concept of granularity is not
just handy for integrating different location services (though it
certainly is that), but is also essential for protecting user privacy.

Location providers should specify all the levels of granularity of
location information they are able to provide, and location
consumers should specify all the levels of location information
they are able to consume. This way, location providers and
location consumers can be easily mixed and matched, neither
requiring a particular location system, nor sacrificing the user’s
privacy.
Fire Eagle supports this principle by providing an API for location
consumers to specify the level of granularity in their requests.
This is a good start. But in order to realize the integration of
different location systems, standards for these levels of location
granularity will need to be decided upon and these hierarchies of
location may not be simple. What qualifies as a neighborhood?
(Some addresses may be thought of inside more than one.) And
what about concepts of location not tied to precise geography (like
“at home” or “on the bus”)? [6]

Once these standards are defined, third parties may handle
conversion between levels of granularity. Google’s Geocoding
service [4] and Urban Mapping’s Neighborhood API [9] are
already on the market.

5. WHY A METASYSTEM?
It might be argued that there’s no need for an elaborate
metasystem when a single location broker can fulfill these
requirements for us. Yahoo!’s Fire Eagle does a commendable
job of enabling (to some extent) all three proposed principles:
consent, minimal disclosure and granularity specification.
But we shouldn’t feel any more comfortable relying on a single
broker and holder of location information for the World Wide
Web than we were relying on Microsoft’s Passport as a single
holder of authentication and identity for the Web. Exclusively
using Yahoo!’s implementation creates a single point of failure,
trusts a corporate entity with a massive amount of personal

information (and as a result makes Yahoo!’s servers a large and
dangerous target) and doesn’t allow for competition and
differentiation of features.

Figure 1 The Fire Eagle platform is a store and broker of

location information. By holding this central position, Fire
Eagle is able to keep control of permissions and handle

formatting and granularity. [5]
On the other hand, an open set of protocols would let location
service developers mix and match providers or brokers of
information, take advantage of features from different vendors
and switch between providers when one is shut down or
temporarily unavailable.

6. PROPOSAL (BY ANALOGY): OLoc
The question remains how to implement a location metasystem. I
won’t try to duplicate here the important work being done by the
W3C Geolocation Working Group (on standards for client-side
interfaces for releasing location data to web applications[3]) or the
IETF GeoPriv Working Group (on authorization requirements and
a location format which includes privacy[2]). Ideally, a
standardized set of protocols, file formats and privacy rules would
be agreed upon by all the major players (Yahoo!, Google,
Microsoft, Apple, et al.).

But such political resolutions are unlikely to happen quickly and
may not be necessary. Although the Microsoft-described identity
metasystem is deeper and more featureful, the OAuth project goes
a long way towards effecting the metasystem’s goals. Our
location metasystem may be achieved in the same way.

6.1 What is OAuth and how does it work?
OAuth is an open protocol for delegating authentication.[8]
Identity consumers can forward users to a service provider to gain
access to some (but not all) pieces of data held by that service
provider. This eliminates the insecure practice of users’ providing
their passwords for one service provider to a third-party
consumer, while still enabling user data to be used in more than
one place. The common analogy is giving a special “valet key”
that will let the valet park your car, but won’t let him unlock your
glove compartment.

OAuth is an open standard and aspires to be used by many
different web service consumers and providers. As such, it fulfills
the laws of identity discussed above (consent and minimal
disclosure) in a decentralized way.

Figure 2 OAuth Authentication Flow. [7] Note that user
authorization is completed entirely in the context of the

Service Provider.

6.2 OLoc, an OAuth equivalent
I propose that similar progress towards the goal of a location
metasystem could be made with an OAuth equivalent we might
call OLoc. Such a protocol need not and should not specify how
the location consumer or location provider are constructed.
Instead, the OLoc protocol will specify how any identity
consumer and identity provider can communicate such that the
principles of consent, minimal disclosure and granularity are all
satisfied.

Identity consumers should call into the service provider with an
identifier for the user, the consumer’s identity and a granularity
level (potentially several) requested.
 requestLocationAuth <user, consumer, granularity[]>

The location provider asks the user whether he is willing to reveal
his location to that consumer and at what level of granularity.
This consent might be obtained by redirection to a webpage (as in
Fire Eagle) or a client-side dialog (as on the iPhone). If and only
if access is granted, the location provider responds to the
consumer.
 requestGrantedCallback<user, granularity, token>

The response contains a token that the consumer can use to access
location information for that user and specifies the granularity of
location information that the user has allowed – knowing this in
advance, the consumer can choose when to perform a query (a
location-tracking service will request data much more often if it
has address-level access rather than country-level access).

Making use of the token it received, the consumer can then
request location data.
 requestLocation<user, granularity[], token>

The consumer specifies the particular granularity it needs since
the consumer may, in keeping with the “need-to-know” principle
of minimal disclosure, only be requesting the state even though it
has permission to access address-level information. Optionally,
the consumer may specify an ordered list of granularities that it
can accept: flexible consumers will make the best use of the
location data that the user is willing to reveal and providers will
know not to even send imprecise location to a strict consumer that
won’t make use of it.
 returnDataCallback<user, granularity, location>

Finally, the provider returns the location data to the consumer,
specifying what its granularity is so that the consumer can
intelligently and gracefully make use of (or ignore) the data.

OLoc is not inherently a server-side or client-side protocol: the
same basic structure (requesting authentication, granting
authentication, requesting data, returning data) applies whether
the provider and consumer are on the same device (as in the
iPhone) or widely separated (as in Fire Eagle). The same
parameters for authentication and granularity apply as well
(although in a client-side case, it may not be necessary to specify
a particular user).

This is only a brief outline of an OAuth-style protocol for
location, which would necessarily be more complex if
implemented. But this sketch shows how simple a protocol can
fulfill the three proposed principles and be interoperable with
component systems. Combined with a system for automated
discovery of location systems (and their granularities), an OLoc
protocol could lead to rapid development of interoperable, zero-
configuration, location-aware web services.

7. CONCLUSION
These principles of consent, minimal disclosure and granularity
can address problems with location services for both users and
developers and speed both development and adoption of the
location-aware Web.

How to build the protocols and standards of the metasystem
remains an open question. Defining an unobtrusive user interface
for consent and minimal disclosure will be one challenge;
defining a flexible but useful standard for granularity will be
another. But a simple, open protocol for requesting location
information of a particular granularity may bring us towards our
end.

8. REFERENCES
[1] Cameron, Kim. “The Laws of Identity”.
http://msdn.microsoft.com/en-us/library/ms996456.aspx. May
2005.

[2] “Geographic Location/Privacy (geopriv)”.
http://www.ietf.org/html.charters/geopriv-charter.html

[3] “Geolocation Working Group Charter”.
http://www.w3.org/2008/geolocation/charter/
[4] “Google Maps API – Geocoding”.
http://code.google.com/apis/maps/documentation/services.html#G
eocoding
[5] “Introduction to Fire Eagle”.
http://fireeagle.yahoo.net/developer/documentation
[6] “Microsoft's Vision for an Identity Metasystem”.
http://msdn.microsoft.com/en-us/library/ms996422.aspx. May
2005.
[7] “OAuth Core 1.0”. http://oauth.net/core/1.0/. Diagram by
Todd Sieling.
[8] “OAuth: Introduction”. http://oauth.net/about

[9] “Urbanware: Neighborhood Database”.
http://urbanmapping.com/urbanware/neighborhood-database

[10] Wilde, Erik and Martin Kofahl. “The Locative Web”, First
International Workshop on Location and the Web, Beijing, China,
April 2008. http://dret.net/netdret/docs/wilde-locweb2008-
locative-web.pdf

